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SUMMARY

Sophisticated catchment runoff problems necessitate conjunctive modeling of overland flow and sub-
surface flow. In this paper, finite difference numerical methods are studied for simulation of catchment
runoff of two-dimensional surface flow interacting with three-dimensional unsaturated and saturated
sub-surface flows. The equations representing the flows are mathematically classified as a type of heat
diffusion equation. Therefore, two- and three-dimensional numerical methods for heat diffusion equa-
tions were investigated for applications to the surface and sub-surface flow sub-models in terms of
accuracy, stability, and calculation time. The methods are the purely explicit method, Saul’yev’s methods,
the alternating direction explicit (ADE) methods, and the alternating direction implicit (ADI) methods.
The methods are first examined on surface and sub-surface flows separately; subsequently, 12 selected
combinations of methods were investigated for modeling the conjunctive flows. Saul’yev’s downstream
(S-d) method was found to be the preferred method for two-dimensional surface flow modeling, whereas
the ADE method of Barakat and Clark is a less accurate, stable alternative. For the three-dimensional
sub-surface flow model, the ADE method of Larkin (ADE-L) and Brian’s ADI method are uncondition-
ally stable and more accurate than the other methods. The calculations of the conjunctive models
utilizing the S-d surface flow sub-model give excellent results and confirm the expectation that the errors
of the surface and sub-surface sub-models interact. The surface sub-model dominates the accuracy and
stability of the conjunctive model, whereas the sub-surface sub-model dominates the calculation time,
suggesting the desirability of using a smaller time increment for the surface sub-model. Copyright © 2000
John Wiley & Sons, Ltd.

KEY WORDS: conjunctive flow model; heat diffusion equation; surface flow; sub-surface flow; transient
flow

1. INTRODUCTION

Many hydraulic and hydrologic problems, including those of urban storm drainage and
watershed runoff, involve interaction of flows on the land surface and in the sub-surface
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porous media. Numerical modeling of such conjunctive surface–sub-surface flows involves
three components: (i) the sub-surface flow partial differential equation (PDE), which is of the
parabolic type; (ii) the surface flow PDE, which is either of the hyperbolic or parabolic type;
and (iii) coupling of the surface and sub-surface flows through the common internal boundary
condition of infiltration through the interface between the surface and sub-surface media.

There are three different ways to connect these components for conjunctive numerical
simulation. The simplest and least accurate way is the uncoupled model of solving the surface
flow sub-model and sub-surface flow sub-model separately in succession without iteration. A
simple infiltration rate expression is used as the common boundary condition between the
sub-models. Freeze [1] called this uncoupled conjunctive approach ‘externally coupled’. The
surface flow model is usually solved first because of the relatively short runoff period and the
rapid change of flow. The result is passed on to solve the sub-surface flow at the same time
step before advancing to solve the surface flow at the next time step. In simulation, the
discretization time scale used for the sub-surface flow is often much larger than that for the
surface flow [1–3]. Smith and Woolhiser [4] were the first to publish on conjunctive surface–
sub-surface flow simulation using this type of uncoupled modeling. They used the Lax–
Wendroff second-order explicit scheme to solve a hyperbolic-type PDE of one-dimensional
kinematic wave overland flow and the non-linear Crank–Nicolson implicit scheme to solve a
parabolic-type PDE of one-dimensional (vertical) single-phase flow in the unsaturated sub-
surface medium. Liggett and Dillon [2] used the conjunctive but uncoupled approach by
solving the one-dimensional unsaturated sub-surface flow using the boundary integral equation
method (BIEM) conjunctively with one-dimensional channel flow Muskingum–Cunge kine-
matic wave routing. A simplified variation of this uncoupled approach is to express the
vertically downward one-dimensional sub-surface flow as an algebraic equation instead of a
PDE. This approach is popular in border irrigation studies. For example, Katopodes and
Strelkoff [5] and Playan et al. [6] used the Kostiakov infiltration equation. The US Department
of Agriculture WEPP model [7] used the Green–Ampt infiltration formula. Singh and
Bhallamudi [8] allowed a choice of the Kostiakov equation or the quasi-analytical Parlange
equation for the infiltration calculation.

The second way to join the conjunctive flow components together is coupled modeling for
which the surface and sub-surface sub-models are solved separately but iteratively at the same
time step joined by a gradient-type equation, representing the infiltration as the common
internal boundary between the two sub-models. Solutions for surface and sub-surface flows at
a time step are achieved when the iterative errors are within specified acceptable tolerances
before advancing to the next time step.

The third way of conjunctive modeling is a coupled model in which the surface flow
equation, sub-surface flow equation, and common internal boundary condition of an infiltra-
tion equation are all solved as simultaneous equations at a time step before advancing to the
next time step. No study has been reported in the literature on the third way for the solution.
Numerically, the first way is the simplest, whereas the third way is the most sophisticated and
theoretically the most satisfactory approach. For future reference, the first way is referred to
as an uncoupled model, the second way is referred to as an alternating iterative model, whereas
the third way is referred to as a coupled simultaneous solution model.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 921–957
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Pinder and Sauer [9] were the first to report on a coupled alternating iterative model. They
used a staggered explicit scheme to solve the hyperbolic-type differential equation of one-
dimensional channel flow conjunctively with an alternating direction implicit (ADI) method
for the two-dimensional saturated groundwater flow parabolic-type PDE, coupled iteratively
through a gradient-type infiltration equation as the common internal boundary condition.
Akan and Yen [10] developed a coupled alternating iterative conjunctive model for one-dimen-
sional overland surface flow and two-dimensional sub-surface flow. A four-point implicit
scheme was applied to solve the hyperbolic-type unsteady, overland flow, dynamic wave
equations. A successive line overrelaxation implicit scheme was applied to solve the non-linear
parabolic-type PDE of two-dimensional flow in unsaturated and/or saturated porous media.
The coupling was achieved through infiltration at the ground surface considering conservation
and pressure relationship as the common internal boundary condition using a quasi-implicit
iterative scheme. Schmitz et al. [11] used an approximate quasi-analytic Parlange infiltration
equation for one-dimensional (vertical) sub-surface flow coupled iteratively with one-dimen-
sional overland flow, dynamic wave equations solved by using an implicit method of
characteristics. Freeze [1] formulated a conjunctive model using the Lax–Wendroff explicit
scheme to solve the one-dimensional channel flow dynamic wave, hyperbolic-type equations
and a successive line overrelaxation technique to solve the three-dimensional unsaturated
sub-surface flow, non-linear, parabolic-type equation. The model was formulated to allow
coupled alternating iterative simulation, but the results presented were obtained without
iteration as in an uncoupled conjunctive model.

For practical reasons it is desirable to extend the coupled conjunctive model to two-dimen-
sional surface and three-dimensional sub-surface flow models to deal with two-dimensional
surface flow and three-dimensional sub-surface flow, because various kinds of infiltration
facilities for urban storm drainage, stream-bed infiltration, and porous-bed storage ponds need
more accurate analyses than the one-dimensional surface and one- or two-dimensional
sub-surface flow simulation. In this paper, finite difference numerical methods are studied for
coupled alternating iterative simulation modeling of the two-dimensional surface flow conjunc-
tive with three-dimensional sub-surface flow. The equations representing both flows are
mathematically classified as a type of heat diffusion equation. Therefore, two- and three-
dimensional numerical methods for heat diffusion equations can be applied to solve the flow
equations. Numerical schemes of the purely explicit method, alternating direction explicit
(ADE) methods, and alternating direction implicit (ADI) methods are investigated for applica-
tion to the surface and sub-surface flow sub-models in terms of accuracy, stability, and
calculation time. The conjunctive model coupling calculations are examined.

2. GOVERNING EQUATIONS

In the present study, the non-inertia unsteady flow equations (inappropriately named diffusion
wave equations in some hydraulic literature) for two-dimensional surface flow and the
Richards equation for three-dimensional sub-surface flow are applied. The conjunctive flow
model simulates the interaction between the surface and sub-surface flows and the solution is
obtained numerically. The theoretical formulation of the conjunctive model is not presented

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 921–957
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here, but is described in a companion paper [Morita M, Yen BC. Modeling of conjunctive 2D
surface 3D subsurface flows. Journal of Hydraulic Engineering, ASCE, submitted].

2.1. Surface flow

The continuity equation and momentum equation in the non-inertia approximation for
two-dimensional surface flow on an x–y overland plane can be combined to yield the
governing equation for the surface flow as
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where Hs is the elevation of the free surface, r is the rainfall intensity, i is the infiltration rate,
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where h is the flow depth, h=Hs−bed elevation; fd is the Weisbach resistance coefficient,
which is a function of the Reynolds number, Re=6h/n, in which n is the kinematic viscosity
of the fluid and 6 is the flow velocity, 6= (6x
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where ks is the equivalent sand-grain roughness size, and R is the hydraulic radius equal to h
for overland flow.

Equation (1) can be written in non-dimensional form in a simple way [13],
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in which Hs*=Hs/Hsr; t*= t/tr; x*=x/xr; y*=y/yr; Dx*=Dx/Dr; Dy=Dy/Dr; r*=r/rr; and
i= i/ir; Hsr, tr, xr, yr, Dr, rr and ir are the reference values of Hs, t, x, y, Dx, Dy, r and i
respectively.
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If Equation (1) is completely linear with constant Dx and Dy, Equation (6) can be simplified
as

(H*s
(t*

=
(2H*s
(x*2 +

(2H*s
(y*2 +r*− i* (7)

For this equation, the relations of the reference values of Dx=Dy=Dr, Drtr/x r
2=1, xr=yr,

rrtr/Hsr=1, and irtr/Hsr=1, are used.

2.2. Sub-surface flow

The three-dimensional sub-surface flow is represented by the Richards equation [1,10],
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ai(u)=KsiKR/((u/(P) (9)

where H is the piezometric head; ax, ay and az are the moisture diffusivity coefficients in the
x-, y- and z-directions respectively; Ksx, Ksy and Ksz are the saturated hydraulic conductivities
in the x-, y- and z-directions respectively; KR is the relative hydraulic conductivity; P is the
capillary pressure head; u is the volumetric moisture content (u=nS, where n is the soil
porosity and S is the saturation degree). The soil hydraulic conductivity is Ki=KsiKR. The
piezometric head H is related to P by H=P+z.

Equation (8) can be applied to both saturated groundwater flow and unsaturated soil water
flow. For saturated flow, P is positive and KR is equal to unity. In the calculation of
unsaturated flow, the relation among P, S and KR is used for the non-linear Equation (8). This
P–S–KR relation is assumed to be constant in time without a hysteresis effect in the present
study.

In the same way as for the surface flow equation, Equation (8) can be non-dimensionalized
as
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where H*=H/Hr; t*= t/tr; x*=x/xr; y*=y/yr; z*=z/zr; ax=ax/ar; ay=ay/ar; and az=
az/ar; Hr, tr, xr, yr, zr and ar are the reference values of H, t, x, y, z, ax, ay and az respectively.

In a similar way as that in introducing Equation (7), Equation (11) can be obtained for a
complete linear case
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For Equation (11), the reference values have the relations of xr=yr=zr, artr/x r
2=1, and

ax*=ay*=a z*=1.

2.3. Coupling of surface and sub-surface flow models

As mentioned previously in Section 1, in this study a coupled alternating iterative solution
model for the two-dimensional surface flow described by Equation (1) interacting with the
three-dimensional sub-surface flow described by Equation (8) is considered. For coupling the
surface and sub-surface flow sub-models together, the supply from rainfall is compared first
with the demand of potential infiltration capacity, or infiltrability, Ip, for simplicity, to
determine the actual infiltration rate i for each time step as shown schematically in Figure 3,

i= −0.5(Ks+K1)(H1−H0)/Dz (12)

where K1, and H1 are the soil hydraulic conductivity and piezometric head at the first node in
the z-direction measured from the overland surface, and H0 is the surface piezometric head,
which is the common boundary condition. The procedure is repeated until the surface and
sub-surface flow solutions change within a specified acceptable tolerance. Then the computa-
tions advance to the next time step. Actually, one cycle of iteration is usually sufficient owing
to the slow response of the sub-surface flow to the surface flow depth variation.

3. NUMERICAL METHODS FOR SURFACE AND SUB-SURFACE FLOWS

Numerous numerical methods have been proposed and published to solve two- and three-
dimensional flow problems. No comprehensive and systematic study has been published to
evaluate and compare these methods. Thibault [14] investigated nine commonly known
three-dimensional finite difference methods for solving the heat diffusion equation. His results
are useful for the selection of the numerical methods for solving the three-dimensional
sub-surface flow and two-dimensional surface flow equations. Thibault demonstrated that the
direct implicit method of solving the set of algebraic equations of the three dimensions
simultaneously and a Crank–Nicolson formulation are prohibitively demanding in computer
time. Based on Thibault’s results and information available from the literature on methods
well known to engineers and scientists (e.g. Anderson et al. [15]), in this study five numerical
methods are investigated for the three-dimensional sub-surface flow and six numerical methods
are investigated for the two-dimensional surface flow. From the results of these investigations,
four surface flow models were coupled with three sub-surface flow models to test conjunctive
flow modeling. Other more sophisticated three- and two-dimensional numerical methods are
available, but are not studied here. For example, the conjugate gradients (CG) preconditioning
method has been successfully applied to accelerate the convergence of iterative procedures for
boundary value problems [16]; and the arbitrary meshes multigrid method [17] and the
Jameson [18] Runge–Kutta multi-stage time integration method have also been developed to
accelerate the convergence of transonic potential flow calculation. These new methods could be
applied to more complicated and sophisticated surface and sub-surface flow problems and an
investigation in the future on their applications is in order.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 921–957
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3.1. Sub-surface flow

For three-dimensional sub-surface flow modeling, five numerical methods have been chosen
for testing as shown in Table I. The computational co-ordinate system is shown in Figure 1,
where infiltration from surface water is mainly through the interface ABCD downward. The
moisture diffusivity coefficient ai(u) in Equation (8) is discretized as given in Table II.

Among the five methods, three of them are of the explicit type: purely explicit, ADE of
Barakat and Clark [19], and ADE of Larkin [20]. The other two are of the implicit type: purely
ADI and ADI of Brian [21].

Larkin’s ADE method is actually a modification of Saul’yev’s [22] method. It is an explicit
method and also an alternating direction method, because the governing equation is solved
independently in the downward direction for U by Saul’yev’s downstream method and in the
upward direction for V by Saul’yev’s upstream method. After these calculations, the two
results, U and V, are averaged to yield one solution of H at each time step. The word
‘downstream’ or ‘upstream’ used in Saul’yev’s method refers to the directions, A�G and
G�A in Figure 1 respectively. Barakat and Clark’s ADE method is also a modification of
Saul’yev’s method and differs slightly from that of Larkin. Barakat and Clark used two
intermediate values of U and V to calculate H at the next time level as described in Table I.

The purely ADI method is a three-dimensional ADI method extended from the two-
dimensional ADI method by Peaceman and Rachford [23]. Brian’s [21] ADI method is
developed from the three-dimensional purely ADI method modified for the three-dimensional
heat diffusion equation considering the stability problem. ADI methods solve simultaneous
equations implicitly and usually require more calculation time than the explicit methods.

3.2. Surface flow

Numerical methods considered for surface flow and their discretization schemes are shown in
Table III. Five of the six numerical methods applied here are explicit schemes: the purely
explicit method, Saul’yev’s [22] downstream method, Saul’yev’s upstream method, Larkin’s
[20] ADE method, and Barakat and Clark’s [19] ADE method. The ADI method applied here
has an implicit alternating direction scheme and is identical with the Peaceman and Rachford
[23] ADI method. The schematic diagram of the tested surface flow and computation grid is
shown in Figure 2. The word ‘downstream’ and ‘upstream’ used in Saul’yev’s method refers to
the directions shown in Figure 2.

4. COMPARISON OF NUMERICAL METHODS FOR SURFACE FLOW

The comparison between calculated values and experimental data provides useful informa-
tion on the applicability of the numerical methods studied. Before investigating the two-
dimensional surface flow model in terms of stability, accuracy and calculation time, a set of
published physical experimental data obtained by Izzard [24] was preliminarily compared with
the numerically calculated results of the six numerical methods. Izzard’s experimental plot was
72 ft long, 6 ft wide, and had a bed slope of 0.001. The surface was covered with crushed slate
roofing paper. Surface runoff was produced by simulated uniform rainfall over the entire plot

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 921–957
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Table I. Discretization in the numerical methods for sub-surface flow.
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Table I. (Continued)
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t −Hi, j,k

t )+
az2

(Dz)2 (Hi, j,k+1
t −Hi, j,k

t )

Vi, j,k−Hi, j,k
t

Dt/2
=

ax1

(Dx)2 (Ui−1, j,k−Ui, j,k)+
ax2

(Dx)2 (Ui+1, j,k−Ui, j,k)

+
ay1

(Dy)2 (Vi, j−1,k−Vi, j,k)+
ay2

(Dy)2 (Vi, j+1,k−Vi, j,k)

+
az1

(Dz)2 (Hi, j,k−1
t −Hi, j,k

t )+
az2

(Dz)2 (Hi, j,k+1
t −Hi, j,k

t )

Hi, j,k
t+Dt−Vi, j,k

Dt/2
=

ax1

(Dx)2 (Ui−1, j,k−Ui, j,k)+
ax2

(Dx)2 (Ui+1, j,k−Ui, j,k)

+
ay1

(Dy)2 (Vi, j−1,k−Vi, j,k)+
ay2

(Dy)2 (Vi, j+1,k−Vi, j,k)

+
az1

(Dz)2 (Hi, j,k−1
t+Dt −Hi, j,k

t+Dt)+
az2

(Dz)2 (Hi, j,k+1
t+Dt −Hi, j,k

t+Dt)
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Figure 1. Computational grid sub-surface flow model.

and the discharge Q was measured at the downstream end of the plot. This surface flow was
practically one-dimensional. It would be desirable to verify the model by using experimental
data of two-dimensional curvilinear flow. However, reliable data of such flow are not
available. Therefore, Izzard’s plot was set in the computational grid at either 45° or 26.6° to
the x-direction (Figure 2) for the verification of the two-dimensional surface flow model. The
calculation was thus carried out two-dimensionally as described previously in Section 2. The
computed velocity at the downstream end of the plot, 6d, was checked to confirm it was

Table II. Discretization of moisture diffusivity coefficients.

DiscretizationCoefficient

ax1
1
2(Ki−1, j,k+Ki, j,k)

((u/(P)i, j,k

=
�a�i, j,k

2
�

1+
Ki−1, j,k

Ki, j,k

�
ax2

1
2(Ki+1, j,k+Ki, j,k)

((u/(P)i, j,k

=
�a�i, j,k

2
�

1+
Ki+1, j,k

Ki, j,k

�
ay1

1
2(Ki, j−1,k+Ki, j,k)

((u/(P)i, j,k

=
�a�i, j,k

2
�

1+
Ki, j−1,k

Ki, j,k

�
ay2

1
2(Ki, j+1,k+Ki, j,k)

((u/(P)i, j,k

=
�a�i, j,k

2
�

1+
Ki, j+1,k

Ki, j,k

�
az1

1
2(Ki, j,k−1+Ki, j,k)

((u/(P)i, j,k

=
�a�i, j,k

2
�

1+
Ki, j,k−1

Ki, j,k

�
az2

1
2(Ki, j,k+1+Ki, j,k)

((u/(P)i, j,k

=
�a�i, j,k

2
�

1+
Ki, j,k+1

Ki, j,k

�
�a�i, j,k=Ki, j,k/((u/(P)i, j,k
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Table III. Discretization in the numerical methods for surface.

Basic equation (H

(t
=
(

(x
Dx

(H

(x
+
(

(y
Dy

(H

(y

Purely explicit method Hi, j
t+Dt−Hi, j

t

Dt
=

Dx1

(Dx)2 (Hi−1, j
t −Hi, j

t )+
Dx2

(Dx)2 (Hi+1, j
t −Hi, j

t )

+
Dy1

(Dy)2 (Hi, j−1
t −Hi, j

t )+
Dy2

(Dy)2 (Hi, j+1
t −Hi, j

t )

Saul’yev’s method [22] Ui, j
t+Dt−Ui, j

t

Dt
=

Dx1

(Dx)2 (Ui−1, j
t+Dt −Ui, j

t+Dt)+
Dx2

(Dx)2 (Ui+1, j
t −Ui, j

t )(downstream)

+
Dy1

(Dy)2 (Ui, j−1
t+Dt −Ui, j

t+Dt)+
Dy2

(Dy)2 (Ui, j+1
t −Ui, j

t )

Saul’yev’s method [22] Vi, j
t+Dt−Vi, j

t

Dt
=

Dx1

(Dx)2 (Vi−1, j
t −Vi, j

t )+
Dx2

(Dx)2 (Vi+1, j
t+Dt −Vi, j

t+Dt)(upstream)

+
Dy1

(Dy)2 (Vi, j−1
t −Vi, j

t )+
Dy2

(Dy)2 (Vi, j+1
t+Dt −Vi, j

t+Dt)

ADE method of Hi, j
t+Dt=

Ui, j
t+Dt+Vi, j

t+Dt

2Barakat and Clark [19]
U, V computed as in Saul’yev’s downstream and upstream methods

ADE method of Larkin Ui, j
t+Dt−Hi, j

t

Dt
=

Dx1

(Dx)2 (Ui−1, j
t+Dt −Ui, j

t+Dt)+
Dx2

(Dx)2 (Hi+1, j
t −Hi, j

t )[20]

+
Dy1

(Dy)2 (Ui, j−1
t+Dt −Ui, j

t+D)+
Dy2

(Dy)2 (Hi, j+1
t −Hi, j

t )

Vi, j
t+Dt−Hi, j

t

Dt
=

Dx1

(Dx)2 (Hi−1, j
t −Hi, j

t )+
Dx2

(Dx)2 (Vi+1, j
t+Dt −Vi, j

t+Dt)

+
Dy1

(Dy)2 (Hi, j−1
t −Hi, j

t )+
Dy2

(Dy)2 (Vi, j+1
t+Dt −Vi, j

t+Dt)

Hi, j
t+Dt=

Ui, j
t+Dt+Vi, j

t+Dt

2

ADI method Hi, j
t+1/2Dt−Hi, j

t

Dt/2
=

Dx1

(Dx)2 (Hi−1, j
t+1/2Dt−Hi, j

t+1/2Dt)+
Dx2

(Dx)2 (Hi+1, j
t+1/2Dt−Hi, j

t+1/2Dt)

+
Dy1

(Dy)2 (Hi, j−1
t −Hi, j

t )+
Dy2

(Dy)2 (Hi, j+1
t −Hi, j

t )

Hi, j
t+Dt−Hi, j

t+1/2Dt

Dt/2
=

Dx1

(Dx)2 (Hi−1, j
t+1/2Dt−Hi, j

t+1/2Dt)+
Dx2

(Dx)2 (Hi+1, j
t+1/2Dt−Hi, j

t+1/2Dt)

+
Dy1

(Dy)2 (Hi, j−1
t+Dt −Hi, j

t+Dt)+
Dy2

(Dy)2 (Hi, j+1
t+Dt −Hi, j

t+Dt)
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uniform across the width of the surface, b. The discharge Q was computed as 6dhb. The data
of Izzard’s Run 138 was used for the comparison. The calculated results agree excellently with
the experimental data.

A comparison of the computed results with analytic solutions, if possible, is a desirable way
to evaluate the numerical methods. However, no analytic solution exists for the quasi-linear
differential equations of two-dimensional surface runoff. Instead, the steady state discharge
resulting from a spatially uniform rainfall with constant intensity for 18 min is compared with
the simulated results. After the runoff reaching the equilibrium stage, the computed discharge
Q should be identical to the rain input rate, rc. The discharge after 8 min or 480 s of a constant
rain intensity of 90.2 mm h−1 on the same plot as Izzard’s experiment was calculated using the
six different numerical methods studied. In this verification, the value of (Q−rc)/rc was used
as the relative error. For the surface flow on Izzard’s experimental plot, the reference values
in the non-dimensional equation (6) are set as follows: xr=yr=Lp/
2 and tr=480 s, in which
the length of the plot is Lp=72 ft.

Figure 2. Computational grid for two-dimensional simulation of Izzard’s surface flow experiment.
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Figure 3. Flow chart of surface–sub-surface flow conjunctive model calculation.
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Equation (7) is a special case of completely linear form of Equation (6). In this case, the
well-known stability criterion for the purely explicit method is theoretically introduced as

j1=k [(Dx)−2+ (Dy)−2]DtB0.5 (13)

where k is the diffusivity coefficient equivalent to Dx and Dy in Equation (1). For the two ADE
methods and the ADI method, theoretical analyses showed that the methods are uncondition-
ally stable for the linear two-dimensional heat diffusion equation [15,19,20]. The present study
investigates the stability characteristics of the six numerical methods for the non-linear heat
diffusion equation as in Equation (1).

The parameter j1 in Equation (13) can be regarded here as a stability parameter to observe
the stability and accuracy characteristics of the six numerical methods; although Equation (1)
is non-linear and has changeable diffusivity coefficients, Dx and Dy. The values of Dx and Dy

for k in the criterion are set at 0.5 m2 s−1 from the relation Drtr/x r
2=1 in Equation (6).

The six numerical methods (Table III) were applied to Equation (1) to calculate the
discharges Q at the downstream end of the plot for comparison with the constant rain
intensity. In the calculation, the Reynolds number was always less than 30 000 and the
frictional resistance was calculated either from Equation (3) or from Equation (4). The initial
flow depth was assumed to be 0.01 mm. Since the accuracy and stability of the calculated
values depend on the relation between Dx, Dy and Dt used, several different values of Dt were
used with two different values of Dx/Dy in the calculation of the discharge.

Figures 4–6 show the relations between the relative error and time increment, stability
parameter (Equation (13)), or calculation time. The best result was obtained from Saul’yev’s
downstream method with the relative error less than 10−4. Table IV lists a comparison of the
different numerical methods for the surface flow sub-model as a summary in terms of their
stability and error.

Figure 4(a) shows that large time discretization Dt results in large error for all methods. As
expected, for small Dt, the purely explicit method is excellent in accuracy as is Saul’yev’s
downstream method, followed by the ADI, ADE (Barakat and Clark), ADE (Larkin), and
Saul’yev’s upstream method. The purely explicit method, however, has a stability problem,
which is widely known and is demonstrated in Figure 4(a) with j1 greater than 0.5. The
coefficient D described in Equation (2) changes in time and in space and it ranged from 0.04
to 0.65 m2 s−1 in space after 8 min of rainfall. Using the reference value of 0.5 m2 s−1 for D,
almost the same stability criterion, j1=DDt [(Dx)−2+ (Dy)−2]B0.5, is found as in Equation
(13). Saul’yev’s upstream method and ADI method also become unstable when j1 is greater
than 5.

In addition to accuracy and stability, the time of calculation is another criterion for method
comparison. Figure 4(b) shows the variation of relative errors with the calculation time
corresponding to the symbol points of the different time increments shown in Figure 4(a). The
unit of calculation time, u, shown in the figure is particular to the workstation computer used
for the study, a Sun Microsystems Spark Station 10. Calculation time of 1 u is practically equal
to about 1 s.

A method that has both small relative error and small calculation time is considered an
excellent method. Therefore, Saul’yev’s downstream method is the best, as shown in Figure
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Figure 4. Relative error of surface flow simulation of Izzard’s constant rain experiment titled 45° angle
(Figure 2) for space increment, Dx=Dy=1.0 m. (a) Relative error with stability parameter or time
increment j1=D [(Dx)−2+ (Dy)−2]Dt ; D=0.5 m2 s−1, Dx=Dy=1.0 m; (b) relative error with calcula-

tion time.

4(b). The purely explicit method needs a little more calculation time to give good results because
of the small Dt required to control the stability problem. Likewise, Saul’yev’s upstream method
and Larkin’s ADE method also need small Dt values and long calculation times to get good
simulation results. Barakat and Clark’s ADE method and the ADI method both yield reasonable
results, whereas the former has been found slightly better than the latter in terms of relative error.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 921–957



M. MORITA AND B. CHIE YEN936

Figure 5. Relative error of surface flow simulation of Izzard’s constant rain experiment titled 45° angle
(Figure 2) for Dx=0.5 m, Dy=1.0 m j1=D [(Dx)−2+ (Dy)−2]Dt ; D=0.5 m2 s−1.

Figure 6. Relative error of surface flow simulation of Izzard’s constant rain experiment titled 26.6° angle
(Figure 2) for Dx=Dy=1.0 m j1=D [(Dx)−2+ (Dy)−2]Dt ; D=0.5 m2 s−1.
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Table IV. Comparison of different numerical methods for surface flow.

Method Commencement of stability Ranking of error
problem

Large DtSmall Dt

Saul’yev’s downstream method 1No 1
2ADE method of Barakat and Clark Large Dt (j1\10) 4
33Mid Dt (j1\5)ADI method

5ADE method of Larkin —Mid Dt (Dx"Dy)
—6Mid Dt (j1\5)Saul’yev’s upstream method

Purely explicit method 1Small Dt (j1\0.5) —

In Figure 4(a) and (b), the spatial discretization ratio used is Dx/Dy=1. To examine the
effect of spatial discretization on the two-dimensional surface flow simulation, the ratio
Dx/Dy=0.5 is also tested for the condition of Izzard’s experimental plot. The results are
shown in Figure 5. The accuracies are slightly better than those in Figure 4(a) because of
the smaller Dx. Each of the six methods has almost the same trend and similar stability
criteria as in Figure 4(a), as theoretically expected. The purely explicit method becomes
unstable with j1 greater than 0.62. Barakat and Clark’s ADE here is observed to be
unstable with j1\12.5.

The 45° tilting of Izzard’s plot for two-dimensional simulation may not adequately reflect
the problem in two-dimensional computations because of the diagonal symmetry of the x–y
plane. Therefore, calculations were done with Izzard’s plot tilted at a 26.6° angle (Figure 2),
and the result as shown in Figure 6 is found to be almost the same as that in Figure 4(a).
The ADE by Barakat and Clark becomes unstable as in Figure 5. The relative error of the
ADI method becomes a little small at j1=10. However, the calculation around j1=10 is
observed to be unstable.

5. VERIFICATION AND COMPARISON OF NUMERICAL METHODS FOR
SUB-SURFACE FLOW MODEL

No analytical solution is available for non-linear two-dimensional and three-dimensional
sub-surface flows to verify the numerical methods for the three-dimensional sub-surface
flow model. Nor are experimental data that are sufficiently accurate and available. There-
fore, in this study, a linearized analytical solution by Philip [25] for one-dimensional vertical
downward percolation was applied for the verification. After the verification, the five nu-
merical methods are evaluated for their stability and accuracy for three-dimensional sub-
surface flow using reference bases to compare the numerical solutions. Both soil saturation
profile and infiltration rate are evaluated.
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5.1. One-dimensional downward flow and saturation degree profile

The linearized analytical solution (see Appendix A) by Philip [25] was applied for one-
dimensional vertical percolation in the porous medium to verify and compare the five
numerical methods. To obtain the analytical and numerical solutions, an idealized soil with the
following hydraulic properties was assumed: n=0.125; u0=0.025 (t=0, z\0), u1=0.125
(t\0, z=0), S0=0.2, S1=1.0, K(u0)=1.25×10−3 mm s−1, K(u1)=6.25×10−3 mm s−1.
D* and k in Philip’s [25] analytical solution are constants having the following values:

D*=K
dP
du

=2.5 mm2 s−1 (14)

k=
dK
du

=
1
n

dK
dS

=0.05 mm s−1 (15)

In addition, the relation between P and S using Equations (14) and (15) was applied with the
condition of KR=S, resulting in

P=
D*
k

ln S (16)

The P–S–K relation of the idealized soil used in the calculation is given in Figure 7.
For the numerical calculation, the values of the space increment and the number of grids in

Figure 1 were set as follows: Dx=Dy=Dz=10 mm; N=M=10 and L=100. The total
number of the grids amounts to 10 000. The moisture diffusivity coefficient �a�i, j,k in Table II

Figure 7. Hydraulic properties of soil used in calculation of Figure 8.
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is set equal to the constant D*=2.5 mm2 s−1, but in the quasi-linear form of Equations (8)
and (9), the soil hydraulic conductivity K changes with S and P as shown in Equations
(14)–(16). After computing H in Equation (8) and P from the relation P=H−z, the values
of saturation degree S can be obtained using Equation (16). Although the flow is actually
one-dimensional, the calculation of Equation (8) was carried out three-dimensionally to
compute the saturation degree S and the result was compared with Philip’s one-dimensional
analytical solution. For this calculation, the reference values in the non-dimensional equation
(10) are set as follows: xr=yr=zr=1.0 m, ar=D*=2.5 mm2 s−1. The reference value of tr is
set at 400 000 s from the relation artr/x r

2=1 for simplification in Equation (10), which gives
Equation (11). To observe the stability and accuracy, a stability parameter j2 is also used here
for three-dimensional sub-surface flow calculation in the same way as in Equation (13),

j2=k [(Dx)−2+ (Dy)−2+ (Dz)−2]Dt (17)

where k is the diffusivity coefficient equivalent to a or D* in Equation (8). For the
three-dimensional linear heat diffusion equation, the stability criterion of the purely explicit
method is theoretically j2B0.5.

Figure 8 shows the solution of Equations (8) or (10), together with Philip’s analytical
solution for the saturation degree at t=1000 s and t=4000 s respectively after the initiation
of infiltration. It depicts the result obtained with the ADE method of Larkin using time
increments Dt=10.0 s for t=1000 s and Dt=0.5 s for t=4000 s. The agreement between the
two solutions is excellent. Larkin’s ADE result is the best among the five numerical methods
given in Table I; but the simulation results of the other four methods using the same Dt are
almost the same, indistinguishable if plotted on the figure.

Figure 8. Comparison between calculated soil saturation by Larkin’s ADE method with Dt=1.0 s and
Philip’s analytical solution.
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Similar to the case of the surface flow model, the accuracy, stability, and calculation time
were investigated for the five numerical methods listed in Table I. The normalized error is
calculated as

d1=
' %

m

i=1

(Si−Si0)2/(m−1)
,� %

m

i=1

Si0/m
�

(18)

where d1 is the normalized error; Si is the degree of saturation for numerical solution; Si0 is the
degree of saturation from the analytical solution; m is the number of saturation degrees.

Figure 9(a) shows the relation between normalized error and time increment Dt at t=1000 s.
The calculated saturation degrees used in Equation (18) are those from 0 to 0.3 m in depth.
This is because the wetting front of infiltration at t=1000 s (t*=0.0025) in Figure 8 exists
around 0.3 m in depth. Similarly, the relation between the normalized error and time increment
Dt at t=4000 s (t*=0.01) is presented in Figure 9(b). For the calculation of Figure 9, az1 and
az2 in Table II change with K, while ax1=ax2=ay1=ay2=a=constant=2.5 mm2 s−1. To
calculate the normalized error, the values of saturation degree from 0 to 0.7 m in depth are
used as indicated by the wetting front in Figure 8.

In Figure 9(a) the error increases with increasing time increment as in Figures 4(a), 5 and 6.
For all the methods shown in Figure 9(a) or (b), the error becomes large for the stability
parameter j %2\0.25 (Dt\10 s) where j %2=aDt/(Dz)2. The purely explicit, Barakat and Clark’s
ADE, and the purely ADI methods have stability problems when j %2 is larger than 0.25, 1.25
and 1.25 respectively. The observed critical values of the stability parameter j %2=0.25
(Dt=10 s) for the purely explicit method is a little smaller than in the linear case, j %2=0.5.
Unlike the two-dimensional surface flow sub-model, for quasi-linear three-dimensional sub-
surface flow simulation the purely explicit method offers no advantage in accuracy, even
for small Dt. The ADE method of Barakat and Clark is unstable for quasi-linear three-
dimensional simulation. The three-dimensional purely ADI method is unstable as mentioned
by Richtmyer and Morton [26]. In contrast, the ADE method of Larkin and the ADI method
of Brian have been found stable and better than the other methods with the stability parameter
less than 1.0. Beyond that, Brian’s ADI method performs well. In Figure 9(b) the smallest
errors for all of the numerical methods can be recognized as the time increment, j %2, ranges
from 0.01 to 0.025, where the normalized errors are found to be under 10−3.

Figure 9(c) presents the relation between the normalized error and calculation time at
t=4000 s. Figures 9(c) and 10(b) are presented in the same way with the points related one to
one to those of Figures 9(b) and 10(a) respectively. As mentioned previously, the unit of
calculation time u is computer specific and in this study 1 u is roughly 1 s. Figure 9(c) shows
that longer calculation time gives better results up to about 10 000 u. Beyond that calculation
time the accuracy for the two ADE and the two ADI methods all decreases. Decreasing
accuracy with longer calculation time is also found in the results of the three-dimensional heat
diffusion calculation by Thibault [14] and can be explained by the accumulation of round-off
errors in calculation with a large number of operations.

In the calculations of Figure 9, identical space increments of Dx, Dy and Dz were used. To
examine the three-dimensional sub-surface flow simulation with different spatial discretization,
Dz=5 mm instead of 10 mm was used for otherwise the same sub-surface flow conditions as
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Figure 9. Normalized error of saturation degree (Equation (18)) for three-dimensional simulation of
one-dimensional sub-surface flow under Philip’s linearized condition, a=D*=2.5 mm2 s−1. (a) Normal-
ized error with stability parameter or time increment for saturation profile at t=1000 s (t*=0.0025)
j %2=a(Dz)−2Dt ; a=2.5 mm2 s−1, Dx=Dy=Dz=10 mm; (b) Normalized error with stability parameter
or time increment for saturation profile at t=4000 s (t*=0.01) j %2=a(Dz)−2Dt ; a=2.5 mm2 s−1,
Dx=Dy=Dz=10 mm; (c) Normalized error with calculation time for saturation profile at t=4000 s
(t*=0.01), a=2.5 mm2 s−1, Dx=Dy=Dz=10 mm; (d) Normalized error with stability parameter or
time increment for saturation profile at t=4000 s (t*=0.01) j %2=a(Dz)−2Dt ; a=2.5 mm2 s−1, Dx=

Dy=10 mm, Dz=5 mm.
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Figure 9 (Continued)

in Figure 9(b) and the results at t=4000 s (t*=0.01) are shown in Figure 9(d). In general, the
smaller space increment Dz improves accuracy. Each of the methods in Figure 9(d) have almost
the same stability criteria as in Figure 9(b); the critical values of stability parameter for the
purely explicit, Barakat and Clark’s ADE, and the purely ADI methods are j %2=0.4, 1.0 and
2.0 respectively. The ranking of the five different numerical methods based on the above
discussion is summarized in Table V.
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Table V. Comparison of different numerical methods for sub-surface flow.

Ranking of errorMethod Commencement of stability
problem

Large DtSmall Dt

ADE method of Larkin No 1 2
12NoADI method of Brian

Purely ADI method Large Dt (j %2\1.25) 3 —
ADE method of Barakat and Clark Large Dt (j %2\1.25) 4 —

5Purely explicit method Small Dt (j %2\0.25) —

A number of previous studies on numerical methods compared the numerical solutions
of the heat diffusion equation with analytical solutions. However, most of these stud-
ies dealt with a completely linear heat diffusion equation with constant diffusivity coeffi-
cients [14]. In the present study, the linearized equation of Philip [25] for which the
hydraulic conductivity K in the equation varies with saturation degree as shown in Figure 7
is used. For a comparison of the completely linear diffusion equation with the numerical
solution of the linearized equation of Philip, Figure 10(a) and (b) show the saturation
degree at t=4000 s on the condition that K is kept at a constant value of 0.0625 mm s−1

and moisture diffusivity a=D*=2.5 mm2 s−1. This means k in Equation (15) is equal to
zero.

Figure 10(a) indicates that for the linear three-dimensional heat diffusion equation the
purely explicit method is the most accurate among the methods until stability problems
occur. This is different from the result for the one-dimensional quasi-linear case shown in
Figure 9(a) and 9(b), and is similar to the two-dimensional surface flow shown in Figures
4(a) and 5. The observed stability criterion of the purely explicit method is, as in Equation
(17), j %2=a(Dz)−2DtB0.5. This confirms that the sub-surface flow in the complete linear
case of Figure 10 is one-dimensional, although the model calculation is carried out three-
dimensionally. The normalized error reaches as low as 10−4, which is on the same order as
the case in Figure 9(b). The purely ADI method is also unstable when j %2 is greater than
1.25. The other three methods, ADI of Brian and two ADEs, are numerically stable within
the range tested. As in Figure 9(c), decreasing accuracy with longer calculation time beyond
100 u is observed in Figure 10(b). In Figure 10(a), the two ADI methods and the purely
explicit method are better than the two ADE methods for time increment j %2 smaller than
0.25, whereas Brian’s ADI method is more accurate for j %2 larger than 1.25. For the two
ADE methods, Barakat and Clark’s ADE method is stable and more accurate than
Larkin’s ADE method as mentioned by Anderson et al. [15]. The results of the three-
dimensional linear case are in agreement with those of Thibault [14] and Anderson et al.
[15]. In this comparison it is important to recognize that the numerical methods have
different accuracy and stability characteristics between in the Philip’s linearized case of
Figure 9(a) and (b) and in the completely linear case of Figure 10(a).
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Figure 10. Normalized error of saturation degree (Equation (18)) for three-dimensional simulation of
one-dimensional sub-surface flow with constant hydraulic conductivity, K=0.0625 mm s−1, ((u/(P)=
0.025 mm−1, a=D*=2.5 mm2 s−1 . (a) Normalized error with stability parameter or time increment for
saturation profile at t=4000 s (t*=0.01) j %2=a(Dz)−2Dt ; a=2.5 mm2 s−1, Dx=Dy=Dz=10 mm; (b)

(b) Normalized error with calculation time for saturation profile at t=4000 s (t*=0.01).

5.2. Three-dimensional cross-directional percolation flow

The five numerical methods (Table I) are further examined for their application to the
proposed sub-surface flow model for simulation of three-dimensional sub-surface percola-
tion flows. With no analytical solutions nor sufficiently accurate experimental data for
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three-dimensional sub-surface flow available as reference, certain values calculated by using a
specified numerical method with a specified time increment are used as reference bases to
compare the three-dimensional sub-surface flow simulations of the five numerical methods.

In this study, the linearized case of Philip calculated using Larkin’s ADE method with
Dt=10.0 s, which shows the least error in Figure 9(a), is selected as the reference to compare
the numerical methods for three-dimensional flow simulation. The soil properties and initial
and boundary conditions used for this reference base are identical with those used to obtain
Figures 9 and 10, i.e. Equations (14) and (15) and those given just preceding these equations.
However, the values of the space increment and the number of grids in Figure 1 are set as
Dx=Dy=Dz=10 mm, and N=M=40 and L=100. The number of the grids totals to
160 000. The calculated reference of one-dimensional linearized saturation profile at t=1000 s
is plotted as the left curve in Figure 11.

The three-dimensional cross-directional sub-surface flows were calculated after the one-
dimensional percolation simulation was established. The soil properties, initial condition, space
increment, and the number of grids in Figure 1 were set as the same as in the one-dimensional
percolation reference. The boundary conditions, however, were different; u=0.125, S=1.0
(t\0, x=0, y=0 and z=0), u=0.025, S=0.2 (t\0, x=400 mm, y=400 mm and z=
1000 mm). Under these conditions, the sub-surface flow propagates in x-, y- and z-directions
simultaneously, roughly from point A towards point G in Figure 1. The three curves to the
right in Figure 11 are the three-dimensional flow saturation profiles in the z-direction at
1000 s at points x=y=50 mm, x=y=100 mm and x=y=150 mm respectively. The
curves were calculated from Larkin’s ADE method with Dt=10.0 s on Philip’s linearized

Figure 11. Calculated degree of soil saturation at t=1000 s for three-dimensional and one-dimensional
percolation by applying Larkin’s ADE method to linearized three-dimensional equation of Philip,

Dt=10 s Dx=Dy=Dz=10 mm.
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three-dimensional sub-surface flow equation. The saturation degree of the three-dimensional
percolation is larger than that of the one-dimensional percolation; it clearly decreases with
increasing x, y and z, i.e. further from the source, as expected.

Figure 12 shows the relation between the normalized difference at t=1000 s and time
increment Dt in the calculation of three-dimensional sub-surface flow. The normalized differ-
ence between the calculated saturation profile of the three-dimensional flow and that of the
reference three-dimensional percolation is computed as

d2=
'%

i

%
j

%
k

(Si, j,k−Si, j,k
0 )2/(m−1)

,�%
i

%
j

%
k

Si, j,k
0 /m

�
(19)

where d2 is the normalized difference; Si, j,k is the degree of saturation from numerical solution;
Si, j,k

0 is the degree of saturation from reference bases; m is the number of points of saturation
degree. The saturation degrees calculated by Larkin’s ADE method with Dt=10 s for S(i, j, k)
(i=1–40, j=1–40, k=1–100) in Figure 1 were adopted as reference bases Si, j,k

0 for the
examination. The number of the grids used for calculation with Equation (19) amounts to
160 000.

The numerical testing of the five methods for three-dimensional sub-surface flow, as
illustrated in Figure 12, indicates that their stability and accuracy characteristics are almost the
same as for one-dimensional flow shown in Figures 9 and 10. The ADE method of Larkin and
the ADI method of Brian are stable and relatively accurate. The purely explicit method

Figure 12. Comparison of normalized difference of saturation degree of sub-surface flow at t=1000 s
(t*=0.0025) calculated by using different numerical methods, j2=a [(Dx)−2+ (Dy)−2+ (Dz)−2]Dt,

a=D*=2.5 mm2 s−1, Dx=Dy=Dz=10 mm.
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becomes unstable when j2\0.5. The purely ADI and ADE of Barakat and Clark become
unstable at larger j2.

5.3. Surface infiltration rate

The numerical solution of the time rate of infiltration through the ground surface can be
calculated with Equation (12). Figure 13 presents the comparison of the surface infiltration
rate between the numerical and analytical solutions. The numerical solution was obtained from
the ADE method of Larkin with a time increment of 10 s. The numerical values agree with the
analytical ones fairly well except during the first 50 s.

Similar to the case of the soil-saturation degree profile, the accuracy, stability and calcula-
tion time of the five numerical methods were investigated. The equation for the normalized
error is

d3=
' %

m

j=1

(ij− ij0)2/(m−1)
,� %

m

j=1

ij0/m
�

(20)

where d3 is the normalized error; ij is the numerically calculated surface infiltration rate at time
j ; ij0 is the analytically calculated surface infiltration rate at time j ; m is the number of
infiltration rates.

Figure 14(a) shows the relation between the normalized error and time increment for the five
numerical methods investigated, in which the values of i were calculated every 20 s from 20 to
400 s, i.e. m=20 in Equation (20). The ADE method of Barakat and Clark, ADE method of

Figure 13. Comparison between infiltration rate calculated using ACE method of Larkin and Philip’s
analytical solution.
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Figure 14. Normalized error (Equation (20)) of simulated infiltration rate into sub-surface with Dx=
Dy=Dz=10 mm j %2=a(Dz)−2; a=2.5 mm2 s−1. (a) Normalized error with stability parameter or time
increment for first 400 s (t*=0.001); (b) Normalized error with stability parameter or time increment for

first 100 s (t*=0.0025).

Larkin, ADI method of Brian, and the purely ADI method have almost the same accuracy.
The curves for the two ADE methods are almost indistinguishable, as are the two ADI method
curves. The purely explicit method is the least accurate of the methods tested. As shown in
Figure 13, the agreement between the numerical and analytical values is not good in the first
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50 s. To compare the numerical methods in detail for the early period, the values of i were
calculated every 4 s, from 4 to 100 s (m=25 in Equation (20)) and the results are shown in
Figure 14(b). The normalized errors in Figure 14(b) are about four times larger than those in
Figure 14(a). The ADE method of Barakat and Clark, the ADE method of Larkin, and the
ADI method of Brian are better than the other methods shown in Figure 14(b).

The comparison among the numerical results of the different methods and with the
analytical solutions as shown in Figures 9–14 facilitated the evaluation of the five numerical
methods in terms of accuracy, stability, and calculation time. Larkin’s ADE method and ADI
method of Brian are unconditionally stable and more accurate than the other methods for
three-dimensional simulations; i.e. different from the case of non-linear two-dimensional
surface flow simulation shown in Figures 4–6, where Larkin’s ADE method is less accurate
and unstable. The ADE method of Barakat and Clark, the purely ADI method, and the purely
explicit method have stability problems. The purely explicit method, however, has the
advantage of easy and simple programming and gave almost the same accuracy as the ADE
method of Larkin when using an appropriate small time increment with the stability parame-
ter, j %2, smaller than 0.5 in a linear and 0.25 in a linearized calculations respectively. Contrary
to the three-dimensional quasi-linear simulation, Barakat and Clark’s ADE method is slightly
better than Larkin’s ADE method for two-dimensional non-linear surface modeling (Figures 4
and 6) and three-dimensional linear (Figure 10) simulation.

6. DISCUSSION ON NUMERICAL CALCULATION OF THE CONJUNCTIVE
MODEL

A numerical check of the conjunctive model that couples surface and sub-surface flow
components was conducted after the numerical methods were tested for the surface and
sub-surface flow models separately. The conjunctive model was first confirmed to produce a
reasonable result under a given rainfall, and then the response of the numerical calculation to
different time increments was examined as was done to verify separately the surface and
sub-surface flow models.

Four surface flow numerical methods and three sub-surface flow numerical methods were
used for the conjunctive models as listed in Table VI. From the testing of the saturation degree
profile calculation of the sub-surface flow methods described in Section 5, the ADE method of
Larkin and the ADI method of Brian have been found to be better than the other three
methods listed in Table I. However, to couple the surface and sub-surface flow components,
the surface infiltration rate as the common boundary condition is more important than the
saturation profile. As described previously, testing of the surface infiltration rate of the
sub-surface flow models (Figures 10(a) and 14) indicate that when Dt is not large the accuracy
of the ADE method of Barakat and Clark is almost as good as the ADE method of Larkin
and the ADI method of Brian. Hence, these three methods were applied for the three-dimen-
sional sub-surface flow simulation in the conjunctive models: Model 1, Model 2 and Model 3
(Table VI). Each sub-surface flow sub-model was combined with four two-dimensional surface
flow sub-models to examine the error interaction between the surface and sub-surface
sub-models. Referring to Table IV, Saul’yev’s downstream is the obvious choice of the surface
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Table VI. Combination of surface and sub-surface flow models for conjunctive model calculation.

Sub-surface flow model Surface flow modelConjunctive model

Model 1 ADE method (Larkin) Purely explicit method
Saul’yev’s method (downstream)
Saul’yev’s method (upstream)
ADE method (Larkin)

Purely explicit methodADI method (Brian)Model 2
Saul’yev’s method (downstream)
Saul’yev’s method (upstream)
ADE method (Larkin)

Model 3 ADE method (Barakat and Clark) Purely explicit method
Saul’yev’s method (downstream)
Saul’yev’s method (upstream)
ADE method (Larkin)

flow method. By considering the accuracy and stability shown in Figures 4–6, three other
methods were also selected for testing. They are the purely explicit, Larkin’s ADE, and
Saul’yev’s upstream. The number of combination totals to 12 as shown in Table VI.

For the numerical calculation of the coupled model, the values of the space increments and
the number of grids for sub-surface flow in Figure 1 were set as follows: Dx=Dy=1.0 m,
Dz=10 mm; N=10, M=10 and L=100. The plane ABCD in Figure 1 is regarded as the
surface for the calculation of Equation (1). The surface has the same Dx and Dy and slopes of
0.001 in the x- and y-directions as the case in Figure 2.

For the discretization condition described above, a typical simulation result of Model 1 for
the surface and sub-surface flows (Saul’yev’s downstream method for the surface flow and
Larkin’s ADE method for the sub-surface flow) is shown in Figure 15 for a triangular rainfall
input. In the calculation, the discharge at the end of the surface CD (Figure 1), the average
infiltration rate i over the whole surface ABCD, and the saturation degree in the soil layer
were calculated under a spatially uniform rainfall with a triangular time distribution as shown
in the figure. The boundaries AB, AD, and BC were closed without water flowing through.
Soil properties were given in the same way as for the verification of the sub-surface flow
models. The values of D* and k in Equations (14) and (15) and the initial condition of S were
set the same as those in the verification of the sub-surface flow models: D*=a=2.5 mm2 s−1,
k=0.05 mm2 s−1 and S=0.2 (t=0, z\0). The relation shown in Figure 15 confirms the
reasonableness of the conjunctive model calculation as will be mentioned.

Before testing the 12 conjunctive modeling options, the three models, Model 1, Model 2 and
Model 3, each with Saul’yev’s downstream method for surface flow were compared from the
viewpoint of reasonableness of the conjunctive model simulation. The steady state discharge
and infiltration rate were calculated for a spatially uniform rainfall with constant rainfall
intensity of 150 mm h−1 for 20 min. When the runoff and infiltration reach the equilibrium
stage at t=1200 s, the discharge Qc plus surface infiltration rate i( c is equal to the rainfall
intensity rc on the basis of water balance. In this checking calculation, Models 1, 2 and 3 were
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Figure 15. Results of conjunctive model calculation.

set to have the same soil saturation degree at the ponding time (t=0 s) just before the overland
flow starts and it is used as the initial condition. The comparison is made for different time
increments as listed in Table VII. The relative errors of the three models are found to be under
10−3 for Dt=0.1 s. The relative errors of the models are almost the same and increase linearly
with time increment. Table VII shows that Model 3 with Barakat and Clark’s ADE method for
the sub-surface flow becomes unstable with Dt=30 s. This stability problem of Barakat and

Table VII. Discharge (Qc), surface infiltration rate (ic) and relative error (oR) of the
conjunctive model calculation by three models based on water balance at t=1200 s mea-
sured from the time of overland flow initiation for constant rainfall intensity rc=

150 mm h−1, oR= (Qc+ic−rc)/rc.

Time increment (s) 1.00.1

Qc icQc ic oR oR

120.09 30.17 0.0018−0.00053Model 1 119.77 30.15
123.41 26.90Model 2 123.02 26.89 −0.00056 0.0020

33.10 0.0016Model 3 116.83 33.09 −0.00050 117.14

Time increment (s) 20.0 30.0

Qc icQc ic oR oR

30.50133.20 0.0910.057Model 1 128.06 30.53
0.063 138.15 26.73Model 2 0.099132.61 26.82
0.054 Unstable UnstableModel 3 124.88 Unstable33.24
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Clark’s ADE method for sub-surface flow calculation was mentioned for Figure 9(a) and (b).
On the other hand, Model 1 with Larkin’s ADE and Model 2 with Brian’s ADI method
remain stable with increasing time increment and the former is a little more accurate than the
latter. From the checking calculation, Model 1 with Saul’yev’s downstream method for surface
flow and Larkin’s ADE method for sub-surface flow was found to be the best for accuracy and
stability. The result of Table VII, together with that of Figure 15, also confirm the reasonable-
ness of the conjunctive model calculations for Models 1, 2 and 3.

To compare the three conjunctive models listed in Table VI, the errors of discharge Q and
infiltration rate i( calculated by the models with different Dt were investigated. For comparison
purpose a reference basis of Q and i( should be selected. Here the reference bases, Q0 and i( 0,
are taken to be the simulation results of Q and i with Dt=0.1 s. The errors are calculated as
the differences between this reference and the computed Q and using different Dt, i.e.
oa=Q−Q0 and ob= i( − i( 0. In this example calculation with triangular rainfall input as in
Figure 15, we used the values of the discharge and infiltration rate at tp=260 s from the
initiation of overland flow for Model 1, Model 2 and Model 3 when the peak discharge occurs,
Qp, Qp0 and the corresponding i( and i( 0.

Figure 16(a) shows the variation of errors oa and ob with time increment for Model 1 for the
example with triangular rain input. The values of the errors ob in infiltration rate are all
positive and increase with Dt. The positive error of ob in infiltration rate results in negative
error in the surface flow calculation. For surface flow modeling, the Saul’yev downstream
method is the best and has the smallest positive error as shown in Figures 4–6. In Figure 16(a),
the discharge error oa of Model 1 with Saul’yev’s downstream method for surface flow is
negative and grows gradually with Dt. This can be explained by the direct effect of the
sub-surface flow calculation on the discharge error just described. On the other hand, in the
calculation of Model 1 with the other three methods for surface flow, the positive error effect
of surface flow calculated by the methods overwhelms the negative error effect of the
sub-surface flow component. This results in rapidly increasing positive error with Dt as shown
in Figure 16(a). In particular, for Model 1 with purely explicit method the discharge
calculation becomes unstable with Dt\2 s. As described in the verification of surface flow
modeling the purely explicit method is unstable with Dt greater than 0.5 s as shown in Figures
4–6. In the conjunctive model calculation, the effect of negative error in the sub-surface flow
calculation reduces the conjunctive accumulation of error and hence the stability lasts longer
than in surface flow calculation alone.

Thus, Figure 16(a) indicates that in conjunctive modeling the contribution to the infiltration
error ob from the sub-surface flow calculation with the ADE method of Larkin is also
influenced by the numerical method applied in the surface flow calculation. Model 1 with
Saul’yev’s downstream method for surface flow has the least error in infiltration rate. Model
1 with the purely explicit method yields the worst results and has stability problems whereas
errors of Model 1 with Larkin’s ADE or Saul’yev’s upstream are in between.

Figure 16(b) shows the variation of errors with time increment for Model 2. Almost the
same trend is observed in Figure 16(b) as in Figure 16(a). For the option of purely explicit
scheme for surface flow, not only the discharge but also the surface infiltration rate becomes
unstable with Dt larger than 2.0 s.
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For Model 3 the variation of the discharge error with time increment shown in Figure 16(c)
is a little different from that for Model 1 or Model 2. The error of the surface infiltration rate
calculated from Model 3 with Saul’yev’s downstream method for surface flow is found to be
negative, whereas the other errors of the surface infiltration rate in Figure 16(a)–(c) are all
positive. The negative error of surface infiltration rate causes the positive error of the discharge

Figure 16. Relation between time increment and coupled modeling error of peak discharge and surface
infiltration rate. (a) Error of peak discharge and infiltration rate with time increment for Model 1
(Larkin’s ADE method for sub-surface flow model); (b) Error of peak discharge and infiltration rate with
time increment for Model 2 (Brian’s ADI method for sub-surface flow model); (c) Error of peak
discharge and infiltration rate with time increment for Model 3 (Barakat and Clark’s ADE for

sub-surface flow model).
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Figure 16 (Continued)

calculated by Model 3 with Saul’yev’s downstream method as clearly shown in Figure 16(c).
This result further confirms the interaction between surface and sub-surface flow calculations.

It is difficult to generalize quantitatively the error structure here. However, the interaction
between the errors in surface flow calculation and those in the sub-surface flow calculation is
easily seen in the conjunctive model results. The characteristics of this interaction are a subject
worthy of further study in the future. The errors of the infiltration rate, ob, are smaller than
those of the discharge, oa, from the comparison shown in Figure 16(a)–(c). From the results of
the conjunctive model calculations in Figure 16(a)–(c), the surface flow option of Saul’yev’s
downstream method is clearly superior to the other three options. The best coupling of surface
and sub-surface flow components is the combination of Saul’yev’s downstream method for
surface flow and Larkin’s ADE method for sub-surface flow because of its smallest error with
increasing time increment and its shorter calculation time.

Figure 16(a)–(c) also show that the surface flow calculation dominates the stability and
accuracy in the conjunctive model calculation. Over 80 per cent of the total calculation time
was spent in the sub-surface model calculation. Therefore, which numerical method to choose
for sub-surface flow dominates the total calculation time for the conjunctive model.

7. CONCLUDING REMARKS

The comparison and verification of the six numerical methods for the surface flow model
presented in this paper yielded several concluding remarks as follows:

(1) All of the numerical methods tested resulted in fairly good agreement between the
calculated and observed data provided an appropriate time increment (j1B0.1; j1=
D [(Dx)−2+ (Dy)−2]Dt, D=0.5 m2 s−2) is used.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 921–957



CONJUNCTIVE FLOW MODEL FOR RUNOFF 955

(2) The purely explicit method and Saul’yev’s downstream method gives the best results in
terms of accuracy with relative errors under 10−3.

(3) Saul’yev’s downstream method is the best in the overall comparison. This method gives
excellent results in the case of two-dimensional calculations such as that shown in Figure 2.
The ADE method of Barakat and Clark is the preferred alternatives considering stability,
relative error and calculation time.

(4) The purely explicit method gives good results, but it has stability problems for large time
increments. If a small time increment (j1B0.5; j1=D [(Dx)−2+ (Dy)−2]Dt, D=0.5 m2 s−1) is
used to avoid the stability problem, this method could be the best.

For the sub-surface flow model, five numerical methods were verified and compared. The
concluding remarks are

(5) Solutions of all the numerical methods for the profile of saturation degree and for the
infiltration rate agree well with Philip’s analytical solution of the one-dimensional linearized
sub-surface flow equation.

(6) Larkin’s ADE and Brian’s ADI methods are unconditionally stable and more accurate
than the other methods. With a stability parameter j %2 (j %2=a(Dz)−2Dt, a=2.5 mm2 s−1)
smaller than 1.0, the former is more accurate and vice versa with a larger stability parameter
j %2\1.0. In terms of accuracy and calculation time, Larkin’s ADE method is slightly better
than Brian’s ADI method.

(7) The examination of the five numerical methods for three-dimensional percolation
indicates that the stability and accuracy characteristics of the methods are almost the same as
for one-dimensional percolation.

(8) The purely explicit method is the most accurate one until stability problems occurs as
demonstrated in the calculation of a special, completely linear case with constant hydraulic
conductivity.

(9) The purely explicit method, the ADE method of Barakat and Clark, and the purely ADI
method all have stability problems in quasi-linear three-dimensional numerical solutions when
j2 (j2=a [(Dx)−2+ (Dy)−2+ (Dz)−2]Dt, a=2.5 mm2 s−1) is larger than 0.5, 5 and 5
respectively.

(10) The ADE method of Larkin and the ADI method of Brian are unconditionally stable
and more accurate than the other methods tested. These two are the preferred methods for
three-dimensional sub-surface flow modeling.

After separate verification and comparison of the numerical methods for the surface flow
and sub-surface flow sub-models, three conjunctive models were investigated. For sub-surface
flow model, three methods were applied: Larkin’s ADE, Brian’s ADI, and Barakat and Clark’s
ADE methods. Each method was combined with four methods for surface flow model:
Saul’yev’s downstream and upstream, Larkin’s ADE, and purely explicit methods. The number
of combination totals 12. It has been found that

(11) The errors of surface flow and sub-surface flow sub-models interact not only the
magnitudes but also the signs (positive or negative) of both errors have an effect on the error
of the conjunctive model.

(12) The surface flow sub-model dominates the accuracy and stability of the conjunctive
model because the surface flow sub-model errors are larger than those of the sub-surface flow
sub-model with the same time increment.
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(13) The sub-surface flow sub-model dominates the total calculation time of the conjunctive
model. Therefore, a larger time increment for the sub-surface flow sub-model than for the
surface flow model could be used to save calculation time with the same accuracy.

(14) For conjunctive surface and sub-surface flow modeling, the surface flow option of
Saul’yev’s downstream method is clearly superior to the other three options: Larkin’s ADE,
Saul’yev’s upstream, and purely explicit methods in this order.

(15) Among the 12 conjunctive modeling options tested, the best coupling of surface and
sub-surface flow components is the combination of Saul’yev’s downstream method for surface
flow and Larkin’s ADE method for sub-surface flow because of its smallest error with
increasing time increment and its shorter calculation time. This finding is further supported by
conclusion items (3), (6) and (10).

APPENDIX A

The equation for percolation in a semi-infinite, homogeneous, one-dimensional soil system of
uniform initial moisture content is described in the linearized form as follows:

(u

(t
=D*

(2u

(z2 −k
(u

(z
(A1)

D*=K
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t=0; z\0, u=u0 (A4)

t]0; z=0, u=u1 (A5)

where u is the moisture content; K(u) is the unsaturated hydraulic conductivity; P is the
capillary pressure. Equations (A4) and (A5) are the initial and boundary conditions
respectively.

The analytical solution of this equation was obtained by Philip [25]
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The infiltration rate was also solved as
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where K0 is the hydraulic conductivity at the soil surface.
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